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Abstract

This paper introduces a cost effective cache architec-

ture called Enhanced Shared-Private Non-Uniform Cache

Architecture (ESP-NUCA), which is suitable for high-

performance Chip MultiProcessors (CMPs). This archi-

tecture enhances system stability by combining the ad-

vantages of private and shared caches. Starting from a

shared NUCA, ESP-NUCA introduces a low-cost mecha-

nism to dynamically allocate private cache blocks closer to

their owner processor. In this way, average on-chip access

latency is reduced and inter-core interference minimized.

ESP-NUCA synergistically integrates victims and replicas

thus making it possible to take advantage of multiple-

readers for shared data, and to maximize cache usage under

unbalanced core utilization. This architecture leads to sta-

ble behavior within the whole system across a broad spec-

trum of working scenarios. ESP-NUCA not only outper-

forms architectures with similar implementation costs such

as private and shared caches by up to 20% and 40% re-

spectively, but even outperforms much costlier architectures

such as D-NUCA [13] by up to 28%, Adaptive Selective

Replication [3] by up to 19%, and Cooperative Caching [5]

by up to 15%. Moreover, performance variance throughout

the set of benchmarks is 37% lower than with ASR, 87%

lower than with D-NUCA, and 43% lower than with Coop-

erative Caching.

1. Introduction

The future evolution in the number of cores per chip of

CMP architectures could be jeopardized by the available

off-chip bandwidth. In order to minimize this effect, a large

amount of intra-chip cache should be provided. Although

the transistor budget is generous, multi-megabyte cache hi-

erarchy with many-core CMP represents a challenge.

First of all, it is necessary to define the sharing crite-

ria among the cores of the CMP, for the on-chip portion of

the memory hierarchy. The most convenient sharing pol-

icy is strongly dependent on the workload. On the one

hand, some applications are characterized by a significant

sharing degree whereas others have little to no sharing at

all. On the other hand, simultaneous threads could inter-

fere destructively in the memory hierarchy. The usage sce-

narios of high-performance CMPs are very dissimilar, rang-

ing from number crunching applications to information pro-

cessing suites or desktop applications. In order to provide

a truly general purpose system, the on-chip memory hier-

archy should be smart enough to adapt its behavior to very

different working conditions.

The Last Level Cache (LLC) may be structured as pri-

vate or shared. Although this discussion is equally appli-

cable with three on-chip cache levels, to simplify it, we

will assume in the rest of the paper that only two levels

are present, therefore LLC will be equivalent to L2. From

an architectural point of view, private and shared caches

exhibit different properties. Private caches are character-

ized by lower on-chip access latency, as they enable the

emplacement of cache blocks closer to the owner proces-

sor. Moreover, they provide inter-thread isolation, elim-

inating most unnecessary inter-core interference. Shared

caches are distinguished by lower off-chip miss rates than

private caches because shared data is not replicated through-

out different L2 locations. They can also outperform private

caches when threads with unbalanced memory usage run in

different cores of the chip or a reduced number of cores

run active threads. Consequently, depending on the inher-

ent characteristics of the system workload, each architec-

tural design could outperform the other [10, 22]. Notwith-

standing, the on-chip memory hierarchy of general purpose

CMPs should be flexible enough to adapt its responsiveness

to the requirements of the existing workload, maximizing

hit rates, minimizing on-chip access latency and reducing

unnecessary inter-core conflicts in order to achieve a stable

performance over a large range of scenarios.

A plethora of studies have made proposals to deal with

the previously identified issues. Some propose starting with

a private cache and limiting the performance degradation

produced by block replication [3, 5, 6, 22]. Others, using a

shared scheme as the baseline, attempt to minimize on-chip



latency degradation [4], the total number of misses [10] or

inter-thread conflicts [8].

The rest of this paper is organized as follows: Section 2

introduces a first approach called Shared Private-NUCA

(SP-NUCA). Section 3 describes the refinements of SP-

NUCA to build up the final proposal: ESP-NUCA. Sec-

tion 4 describes the experimental methodology employed.

Section 5 justifies some architectural decisions taken in the

final proposal. Section 6 presents simulation results and

compares our architecture to previous proposals and, finally,

Section 7 states the main conclusions of the paper.

2. SP-NUCA Architecture

2.1. Privatization of a shared SNUCA

Using the shared S-NUCA as the initial CMP cache

framework we will explain the modifications needed to ar-

rive at the SP-NUCA cache architecture. In shared cache

architectures, each block is emplaced in a fixed position de-

pending only on its address. On the other hand, in private

cache architectures each block is located according to its

address and the accessing core. For a Static NUCA with 2n

L2 banks and 2p processors, similar to the particularization

shown in Figure 1a, in a shared cache each block is placed

in a specific bank, depending on its address. Within the

same basic NUCA substrate it is possible to define a fully

private cache [10]. In this case, each L1 allocates its evicted

blocks in the nearest 2n−p banks, replicating blocks being

accessed by multiple processors. Therefore, the behavior is

not defined by workload characteristics, but statically. For

instance, the highlighted banks in Figure 1a will store the

private blocks for processor zero.
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(b) Address interpretation

Figure 1. Private/Shared partition

SP-NUCA dynamically enables the adaptive utilization

of L2 cache resources at block level. In this architecture we

add an extra bit (the private bit) to the tag of every block in

the cache to distinguish between private and shared blocks.

When a block arrives from memory, its private bit is set and

it is stored in the closest bank to the only processor that

uses it. If another processor tries to access the same block,

this bit is reset. Thus, a block is “private” if it has only

been accessed by one processor and it is “shared” if it has

been requested by two or more cores. This status remains

with the block while it stays in the chip. The private bit

is also present in the on-chip cache requests, as part of the

address. To map an address to its corresponding bank we

use two different functions, one for private mapping and

one for shared mapping, as shown in Figure 1b. The least

significant B bits are used to select the byte/word in the

cache block. Then, we use the n−p bits to select the private

bank or the n bits to select the shared bank depending on

whether it is a private or a shared request. The next i bits,

the index, are used to select the corresponding set in the

bank and the rest of the address is the tag. It is important

to note that the address is the same; the figure shows how

it should be interpreted depending on whether it is a private

or a shared request. The private tag is p bits bigger than the

shared one, but as they are to be stored in the same tag array,

it must have the size of the private tag, slightly increasing

the required area of L2 banks by p bits per line.

Note that we previously stated that a shared NUCAmaps

its blocks onto 2n banks and in a private architecture each

core uses its nearest 2n−p banks, so using the private bit

and these mapping functions we can choose the best archi-

tecture for each block. A block is considered private when

it first arrives to the chip. If another core requests the same

cache block, then we reset the private bit and the block is

considered shared until it leaves the chip.

2.2. Dynamic allocation of shared and private ways
through replacement policy

A fundamental question remains unanswered: how L2

banks are partitioned into shared and private content. As

banks are w-way set-associative, different ways of the same

set can hold shared or private blocks. The private bit is

added to the tag comparison, so private requests can only

match among private blocks and shared requests can only

match among shared blocks.

Nevertheless, one of the key challenges in this proposal

is deciding which ways of each set should hold private data

and which ones should store shared blocks. A statically

defined partition between shared and private blocks could

lead to suboptimal cache utilization. In our architecture,

reassigning a private way to a shared partition is done by

resetting the private bit, so it is straightforward to change

the number of private and shared ways dynamically during

block replacement. Using this technique, we can aggres-

sively adapt the number of private and shared ways. We

choose to include this dynamic allocation of ways as a part

of the replacement algorithm, because it is not in the criti-

cal path and it is a common event that enables us to make

finer grain decisions. When a new block arrives at a set, the



replacement algorithm should choose which way it should

replace. If the data arriving is private but the private data in

the set is frequently used, the replacement algorithm could

choose to evict a shared block and reassign that shared way

to a private one.

2.3. Coherence Protocol

To maintain coherence in the CMP we employ a token-

based coherence protocol [17] with Token-based-directory

(TokenD) [15] as the performance policy. Inclusiveness is

not enforced in the memory hierarchy, so an L2 can evict a

block without having to evict it from the L1 cache. Token

counting assures the correctness of each operation —for in-

stance, false misses due to migrating blocks degrade per-

formance but do not affect the correctness of the coherence

protocol. We used token coherence because it simplifies the

implementation but our architecture does not depend on it.

Figure 2 exemplifies the differences between the two

protocols. In S-NUCA (Figure 2a), a write from core 0

misses in L1 and is sent to the L2 NUCA bank (1). The

shared bank cannot fulfill the request, so it forwards it to

the L1s known to have tokens (in this example, the L1 from

P2) and to memory (2). The response message(s) is/are not

shown to keep the figure clear. In SP-NUCA (Figure 2b),

the L1 sends the request to its private L2 bank (1). The pri-

vate L2 does not have the block, so it forwards the request

to the shared L2 bank and to the memory controller (2). As

with the S-NUCA example, the shared bank does not have

all the tokens. The L2 shared bank forwards the request to

the L1s known to have tokens (3). If the shared L2 bank

does not have the block, it could be possible that the block

is in other private L2s, so the request will be forwarded to

the other private L2 (3’). If the block is found in another

private bank, its private bit is reset and it is migrated to the

corresponding shared bank. Further accesses to this block

by other processors will hit in the shared bank, so the extra

latency when searching in other private banks is required

only once for each shared block. The figure is simplified

and only two requests to the other private L2 banks are de-

picted in the third step.

In S-NUCA this indirection through the private L2 is not

required: after an L1 miss, the S-NUCA sends the request

to the L2 NUCA bank. This additional step will slightly

increase on-chip traffic and L2 hit latency of accesses to

shared data. Additionally, when the requested block is held

by a remote private bank, in the first access, supplemen-

tary steps are needed to satisfactorily finish the transaction.

The L2 bank controller should be capable of forwarding

or satisfying requirements from other L2 banks, increasing

the number of possible actions and transactions in the con-

troller.

An example of a request to a private block that hits in the

L2 is simpler. The private block is stored in the private L2
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Figure 2. Coherence protocol.

banks of P0, so after step 1, the L2 sends a response with the

data and all the tokens to P0. SP-NUCA finds the block in a

nearer bank and answers it faster, while S-NUCA needs to

reach the shared L2 bank, which is 3 network hops further

and thus, has higher L2 latency.

3. ESP-NUCA Architecture

3.1. Support of Replicas and Victims Using Flat
LRU

SP-NUCA as depicted has some potential limitations. As

with any private cache configurations, unbalanced private

capacity from active threads in the CMP could underutilize

cache. As a limit case, albeit an important scenario in a

CMP, a single thread application is able to utilize only a

fraction of the cache capacity. By contrast, in any shared

cache a single thread is able to utilize the full extent of

the cache. Another significant limitation for SP-NUCA, as

with any shared cache configuration, is that multiple shar-

ers have to access a remote bank to get a shared block, in-

creasing on-chip latency for shared accesses. Nevertheless,

many parallel applications are characterized by a large pro-

portion of shared accesses to a relatively small proportion

of cache [3]. Private cache configurations take advantage of

that fact allowing the creation of local copies of the shared

data in the private cache, significantly reducing the average

access-time in some workloads, at the cost of potentially

increasing the cache miss-rate.

As we can see, SP-NUCA has some positive proper-

ties of shared and private caches, but inherits some of their

limitations. ESP-NUCA has been conceived to overcome

those limitations and widen the proposal’s effectiveness to

broader CMP utilization scenarios. It is feasible to tackle

the previously cited weaknesses in a unified and elegant way

if we support replicas and victims. A replica block is a copy

of a shared block stored in the local partition of the cache.

A victim block represents remote private data stored in the

shared cache partition. By adding an extra group composed

of replicas and victims, labeled helping blocks, over private



and shared blocks (first-class blocks), we solve the afore-

mentioned limitations of SP-NUCA.

We can fine tune the number of allocated ways for these

helping blocks by modifying the replacement policy. Our

first approach would be to keep applying a procedure simi-

lar to the dynamic partition of shared and private blocks on

SP-NUCA. Helping blocks are less important to keep. In

fact, they should only be kept if the private and shared hit

rate does not suffer. That is, an L2 cache can hold victim

blocks of a remote core (and increase its on-chip hit rate),

only if that does not affect its own performance. A simi-

lar effect is seen with replicated blocks: with unrestricted

replication the cache hit-rate could be reduced, as shown in

[3].

Although for SP-NUCA the flat LRU replacement pol-

icy is the most cost effective solution, this choice may not

be the best for ESP-NUCA. Flat LRU makes no distinction

between first-class blocks and helping blocks, thus it may be

possible that victims and replicas could increase the cache

miss rate for private and shared blocks. We need to fine

tune the replacement policy to favor the creation of help-

ing blocks it they are helpful, and minimize their presence

in the cache if they are harmful for the performance of the

local core.

3.2. Replica andVictimSupport ThroughProtected
LRU

In order to prevent these conflicts between first-class and

helping blocks, the sets in a bank can only hold a limited

number of victims and replicas. When the replacement pol-

icy has to choose a block to evict, if the number of victims

and replicas in the cache is greater than or equal to this limit,

the LRU block among the helping blocks is chosen. If it is

not (that is, the set has less victims or replicas than it should

have), then the LRU block of the whole set is chosen.

Qureshi et al [18] showed that different applications be-

haved very differently as the available ways per set varies.

In some workloads or execution phases reducing the num-

ber of ways has little to no impact due to the reduced work-

ing set used or the low utility of the cache. In others, due to

the high cache utility, the performance is very sensitive to

the number of available ways. Our goal is to be able to de-

termine on-line how the application is behaving, so we can

provide room for helping blocks only when no performance

degradation is observed for first-class blocks.

The hit rate is constant across the sets of a bank [18] so

we can make some sets behave slightly differently to the

rest and compare their performance with the “normal sets”.

Let nmax be the number of helping blocks per set. nmax

is defined at the bank level, that is, all the sets in a given

bank use the same nmax. We need to calculate, using local

information, the potential benefit of permitting replicas and

victims. In order to do this, we break down the sets in the

bank according to the following three categories:

Conventional Sets Sets that accept up to nmax helping

blocks.

Reference Sets These sets do not allow any victim or

replica. As they behave like the original SP-NUCA,

they provide a reference point for performance com-

parison. If the conventional sets have the same hit rate

(for the first-class blocks) as this set, then we can con-

clude that the performance of those sets is not harmed

by the helping blocks.

Explorer Sets These sets accept one more helping block

than the current limit of the bank (nmax +1). With this
information we can predict the expected performance

loss of increasing nmax.

If Conventional Sets notice that their first-class blocks’

hit-rate is lower than that of the Reference Sets, then they are

accepting too many helping blocks, so they lower nmax to

improve its hit rate and reduce replication and victimization.

On the other hand, if the Explorer Sets achieve the same

first-class blocks’ hit-rate as the Reference Sets, that means

that with one more victim or replica, the hit rate of the first

class blocks is preserved, so they increase nmax.

For example, if an application is in a reduced working-

set execution phase, such as Figure 3a, the Explorer Sets

will increase nmax whereas in a high utility execution

phase, such as Figure 3b, the Conventional Sets will lower

nmax, so they will move towards the Reference Sets mini-

mizing the number of helping blocks in the bank. It should

be noted that the application characteristic could vary dur-

ing the whole execution. Given the number of helping

blocks in the Explorer Sets in Figure 3b it is likely that the

utility of the cache has increased suddenly. The method

described in this section adjusts itself as the application

changes the way it is using the cache.

Each set has a counter (n) that indicates the number of

currently stored helping blocks. At replacement, if n <

nmax the block chosen to be replaced is the LRU block

of the whole set. If n = nmax the LRU block of helping

blocks in the set is replaced. According to the nature of the

selected and the incoming block, n will be decremented or

incremented by one or kept unchanged. For the explorer

sets, the LRU block is chosen if n ≤ nmax and for the ref-

erence sets all helping blocks are refused.

3.3. Firstclass block HitRate Estimation

In order to apply the previously described mechanism

we have to determine on-line the value of nmax. We need

some method to dynamically estimate the first-class blocks’

hit-rate of these special class sets. The hit-rate is a time se-

ries data that fluctuates during the application execution. A
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Figure 3. Hit-rate monitoring of first-class blocks.

technique used in statistics to extract relevant information

from time series is to use moving averages. Among the dif-

ferent options available to estimate the moving average of

the hit rate of first-class blocks we will use the Exponential

Moving Average (EMA). Given a fixedN sample data1, the

EMA is defined for a data set, with value h as:

EMAN = EMAN (1 − α) + hα (1)

where α =
2

N + 1

In our case, h will be 1 if in the current event there is a

hit for a first-class block in the set, and 0 otherwise. We will

estimate independently the EMA of each of the explorer and

the conventional sets. In order to make equation 1 easily

implementable in hardware, α and h should be a power of 2,

so let α = 2−a. We use b bits to store the EMA estimation

and normalize the hit-rate between 2b and 0, the new h′ =
h 2b. In fact EMA′

N = EMA′

N − EMA′

N 2−a + h′ 2−a,

and therefore2:

EMA′

N = EMA′

N − (EMA′

N >> a) +

+
(

2b >> a
)

on hit (2)

EMA′

N = EMA′

N − (EMA′

N >> a) on miss

We denote the conventional set estimated hit rate as

HRC , HRR is the reference set estimated hit rate and

HRE the explorer set estimated hit rate. To estimate each

hit-rate we use a different number of sets. Let 2−d be the

1Note thatN , and by extension α, are constants.
2We denote by x >> y the shift right rotation of y bits in the variable

x.

accepted hit rate degradation for first-class blocks. To deter-

mine the bank value for nmax, we establish that if the hit-

rate estimated for the Explorer Sets is greater than 1 − 2−d

of the Reference Sets’ hit-rate (HRR−HRE < HRR 2−d),

we should increase nmax by one. If the estimated hit-rate of

the Conventional Sets reaches 1 − 2−d value of Reference

Set’s hit-rate HRR − HRC ≥ HRR 2−d, we will decre-

ment nmax by one. These computations are performed after

N references to a set. Formally:

nmax =







nmax − 1 if HRR − (HRR >> d) ≥ HRC

nmax + 1 if HRR − (HRR >> d) < HRE

nmax otherwise

As we can see, the decisions are taken from limited in-

formation. Depending on the number of sets used in each

estimation, the measure will be more or less accurate. It

should be noted that a large number of Explorer Sets or Ref-

erence Sets could impair performance, so it seems conve-

nient to minimize the number of non-conventional sets in

the bank. A reduced number of sets per bank will be used

to estimate its behavior.

The implementation storage overhead is log2w bits per

set to store n and log2w bits per bank to store nmax for a

w-way set-associative cache. 3b bits per bank are needed to

store the three estimated hit rates. Not only are the required

computations easy to implement but none of the operations

required are in the critical path to memory. We need to add

the structures to keep track of LRU blocks in helping blocks.

Note that parameters a, b and d are constants and therefore

fixed by cache design. In Section 5.2, we will choose their

values after a sensitivity analysis for a particular cache con-

figuration.

Although the proposed protected-LRU motivation is



similar to Dynamic Set Sampling [18], our proposal is less

ambitious as we are not accurately estimating the cores’ per-

formance but inferring it via the L2 cache behavior.

4. Evaluation Methodology

4.1. Simulation Framework

The impact of the proposal on system performance will

be evaluated under realistic conditions. For this purpose a

full system simulator based on Simics [14] extended with

the GEMS timing infrastructure [16] will be used. GEMS

is an event-driven simulator that provides a complete model

of the memory system, Ruby, and a detailed state-of-the-

art processor model, Opal. With Ruby, the memory system

simulator, we are able to obtain an accurate implementation

of the memory hierarchy that we are working with. This

includes interconnection network parameters, bank access

time, mapping, replacement policies, etc. Using this en-

vironment a multiprocessor system can be simulated with

the whole software stack, including operating system, web

server, data-base management system, etc.

4.2. Workloads

The applications considered in this study are a mixture

of multi-programmed and multithreaded workloads running

on top of Solaris 9 OS. Therefore, any operating system ac-

tivities such as process migration will be implicit in the re-

sults. With multiprogrammed workloads or transactional

applications OS activity has noticeable relevance in the

workload [2], which makes it essential to use full-system

simulators in order to provide meaningful results.

We have selected 22 workloads composed of a mixture

of four different classes with a variable number of applica-

tions per class. Two of the classes are multithread applica-

tions, being numerical and server-based applications.

Table 1. Workloads under study
Transactional Workloads: Wisconsin Commercial Workload suite

Apache “1000 transactions” JBB “10000 transactions”

OLTP “200 transactions” Zeus “2000 transactions”

Multiprogrammed: SPEC2000 Half Rate

art-4 gcc-4

gzip-4 mcf-4

twolf-4

Multiprogrammed: SPEC2000 Hybrid

art-gzip gcc-gzip

gcc-twolf mcf-gzip

mcf-twolf

Scientific Applications: NAS Parallel benchmarks

BT “class B” CG “class B”

FT “class A” IS “class B”

LU “class A” MG “class A”

SP “class B” UA “class B”

The first family of applications are the transactional

benchmarks which correspond to the full Wisconsin Com-

mercial Workload suite [1], released by the authors in

GEMS version 2.1. All applications are running with the

default input sets and configurations.

The second family is multi-programmed workloads com-

posed of some of the SPEC2000CPU [20] applications. The

Half Rate workloads have the application running in four

cores of the CMP. One of the four idle cores is running sys-

tem services. In all benchmarks the system is in multi-user

level. The Hybrid workloads represent a multi-programmed

scenario where 4 instances of the first program are run in

half of the cores and 4 instances of the second program are

run in the other half. Although not always considered in this

kind of studies, the utilization scenario modeled is frequent

in a desktop environment where only sequential programs

are used.

Finally, the last family of applications considered is all

the applications of NAS Parallel Benchmarks (OpenMP im-

plementation [12] version 3.2.1).

For each data point a variable number of runs are per-

formed with pseudo-random perturbation in order to esti-

mate workload variability and obtain statistically meaning-

ful results [1]. All the results provided have a 95% confi-

dence interval.

4.3. System Configuration

The simulated system is an 8-processor CMP with the

layout depicted in Figure 1a. The main configuration pa-

rameters are shown in Table 2. The cache bank access

time has been obtained using CACTI 5.0 [21] with a power-

efficient sequential access cache for 45nm technology.

Table 2. Main simulation parameters
Number of Cores 8

Core
Out of order, window size: 64,

16 outstanding memory requests, 4 issue width

L1 I/D cache
Private, 32K, 4-way, 64Bytes block,

3 cycle, 1 cycle tag

L2 cache

8MB, NUCA, 8x4 banks,

4 per router, 16-way, 5-cycles, 64Bytes block,

sequential access, 2 cycles tag

Network Topology Mesh with DOR routing, 128 bits wide links

Network Hop 5 cycles

Latency (3 cycles router + 2 cycle link latency)

Each processor has its own private L1 Instruction and L1

Data cache and is connected to a node of the network. The

L2 NUCA is distributed in 32 banks connected four by four

to each switch that each CPU is connected to. The routers

of the central row are connected to memory controllers. The

four L2 banks nearest to each processor by themselves con-

stitute an S-NUCA of the “private portion” of the L2 cache,

as explained in Section 2.1.



5. Dynamic Cache Partitioning and Design Pa-

rameters

5.1. SPNUCA

It must be clarified whether the flat-LRU replacement

policy is the most cost effective method in SP-NUCA to dy-

namically partition shared and private ways. It will be com-

pared against a much more accurate but also more costly

method, such as Shadow Tags [19, 8]. The dynamic adap-

tation of the cache is done at set level having 8 shadow tags

per set. The evaluation and enforcement of the policy is

integrated within the replacement policy.

Additionally a static partition, similar to the one em-

ployed by [23], is included in the comparison. In this case,

12 ways are defined as private and the other 4 are reserved

for shared blocks. As we can see in Figure 4, flat-LRU per-

formance degradation is minimal compared with shadow

tag, whereas the statically defined partition provides poor

performance.
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Figure 4. Dynamic partitioning in SP-NUCA.
Normalized Performance of SP-NUCA LRU
compared to Shadow Tags and a Static par-

tition.

5.2. ESPNUCA

The addition of helping blocks increases the potential

for interference between threads. This subsection analyzes

whether the proposed solution to limit these effects (Section

3.2) is significant. Figure 5 details the system performance

normalized against SP-NUCA when different criteria are

applied at replacement time when a helping block arrives

at the bank. In ESP-NUCA with flat LRU, no restriction

is applied when the least-recently used block in the set is a

first-class block and the new block is a replica or victim. On

the contrary, when protected-LRU is used, according to the

implementation in Section 3.3, the performance advantage

is greater. As we can see, ESP-NUCA improves perfor-

mance where cache utilization is unbalanced or the replicas

are beneficial. Although flat LRU improves SP-NUCA sub-

stantially, protected LRU achieves better performance sta-

bility, especially for very relevant applications like trans-

actional workloads such as Apache and OLTP. Taking into

account the limited implementation cost of protected LRU it

seems reasonable to choose this replacement policy. Given

the clear benefits of ESP-NUCA over SP-NUCA, in order to

provide a clearer proposal, no more SP-NUCA performance

analysis will be provided.
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For these results the HRC,R,E have 8 bits (thus b = 8).
The number of samples used in the hit-rate estimation N is

3, thus α = 0.5 (from equation 1)) and a = 1 (equation 2).
Two Conventional Sets are used for HRC estimation, one

Reference Set and one Explorer Set for HRE and HRR

estimation. The maximum degradation for hit-rate of first-

class blocks in the explorer set was found to be 88% (d = 3
eq (3)). This configuration to estimate different hit-rates has

been determined after sweeping all parameters. Potentially,

the dynamically defined d parameter provides the opportu-

nity to add some Quality of Service Policy [11] on top of

ESP-NUCA. However, we left this for future work.

This will be the configuration used for our proposal for

the remainder of the paper. Note that the storage overhead

is 4 bits per set to store the number of helping blocks in the

set, 48 bits per L2 bank to store hit-rate estimation and 4 bits

per bank to store the maximum number of helping blocks.

For the configuration used, the aggregate storage overhead

is approximately 9KB. Additional hardware is required to

perform hit-rate estimations and the LRU implementation

should be modified in order to establish the helping LRU

block. There is no negative impact on hit-time given that

the management of helping blocks is carried out outside the

critical path to memory.

6. Performance Evaluation

6.1. Alternative Cache Designs

We have selected five counterpart architectures to show

the efficacy of ESP-NUCA. In order to simplify the compar-

ison, all architectures are implemented using a token-based

coherence protocol. The first two architectures are: Static-

NUCA, denoted as Shared, and Tiled architecture, denoted
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Figure 6. Average access time decomposition.

as Private. The S-NUCA uses all banks as a shared L2

cache (Figure 1a) and maps each cache block to a specific

cache bank, depending on the address. The Tiled archi-

tecture uses the same layout (Figure 1a), associating each

group of 4 L2 banks to its closest processor as a fully pri-

vate cache portion. In order to make a fair comparison, all

the rest of the parameters depicted in Table 2 are kept un-

changed. The Tiled architecture uses unrestricted replica-

tion, so each L1 write-back is stored in its private L2 cache.

To clarify the performance of ESP-NUCA, three evolved

architectures of Shared and Private alternatives have been

included in the study. First, as an improved version of

Shared architecture, the dynamically allocated NUCA (D-

NUCA) [13] was selected. The D-NUCA implementation

used is the same one used by [4], which assumes an ide-

alized perfect-search and uses replication. Second, we in-

clude Adaptive Selective Replication (ASR) [3] as another

possible improvement for private caches. ASR is able to

self adapt the replication level to the workload characteris-

tics. Finally, as an improved private architecture Coopera-

tive Caching (CC) [5] was chosen. Different statically de-

fined cooperation probabilities will be evaluated (0%, 30%,

70% and 100%). The performance results will show the av-

erage performance of all configurations, having the worst

and best performer embedded in the variability bars.

Victim Replication [22] was not considered for the eval-

uation because it has been outperformed by both ASR and

Cooperative Caching. CMP-NuRapid [6] has also been out-

performed by ASR and requires a non-scalable interconnec-

tion network. Reactive-NUCA [9] is similar to our pro-

posal, but it makes coarser-grain decisions (paged-based)

and requires modifications to the OS. In any case, when the

performance variability [1] is taken into account, R-NUCA

seems to perform similarly to a shared NUCA, only win-

ning in one benchmark. No software approaches, such as

[7], have been included because they are complementary to

hardware solutions like ours.

6.2. Transactional Workloads

Figure 6 shows the contribution to the average access

time for each element in the memory hierarchy for these ap-

plications. As we can see, although the shared architecture

has a low off-chip contribution, low on-chip locality impairs

the final result. D-NUCA alleviates the on-chip locality

problem but increases L2miss rate, which limits its benefits.

ESP-NUCA not only obtains an on-chip access time very

close to D-NUCA architecture, which demonstrates the ef-

fectiveness of the mechanism improving on-chip locality,

but has much better L2 hit rate than D-NUCA. In fact, the

off-chip contribution is very similar to a shared cache. As

we can appreciate in Figure 7, ESP-NUCA does a great job

balancing on-chip hit latency reduction with less penalty in

off-chip traffic. In contrast, ASR exhibits a very similar be-

havior to plain private cache. This is coherent with the re-

sults obtained in [9] with different workloads and evaluation

infrastructure. Cooperative Caching in some cases is very

similar to ESP-NUCA but in others performs poorly, being

the best case changing from application to application.
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As we can see in Figure 8, for these workloads ESP-

NUCA’s average performance improves on a conventional

shared cache by 15%. ESP-NUCA is the best performer of

all the counterparts achieving a superior number of work-

load transactions per unit of time. CC-Best in some cases

outperforms ESP-NUCA, but it should be noted that the co-

operation probability changes from application to applica-

tion and the best CC has to be chosen for each application

among the four configurations evaluated. In any case, for

this class of benchmarks CC is showing an extremely vari-

able behavior. In contrast, ESP-NUCA’s behavior is fully

adaptive.
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With the high level of shared data of these workloads [4]

D-NUCA is the second best performer. Nevertheless, note

the high cost of the D-NUCA implementation and the lim-

ited benefits. Something similar could be said about ASR.

In contrast, ESP-NUCA with a much more limited cost

is able not just to outperform other architectures but ob-

tain better performance stability in these benchmarks too.

In particular, ESP-NUCA achieves a performance variance

83% less than CC, 38% less than ASR and 74% less than

D-NUCA for transactional workloads.

6.3. Multiprogrammed Workloads Results

Figure 9 shows the performance for these workloads. For

single threaded applications, shared caches have a signifi-

cant advantage over private caches, especially in low utility

benchmarks with large data sets, such as art or mcf. The

performance degrades for architectures without a cache bal-

ancing mechanism, such as private and ASR. They perform

up to 40% worse than shared caches because in those ar-

chitectures only half of the cache is available for the run-

ning thread. The CC mechanism diminishes this problem

and has a quite stable performance. In gcc and gzip, the

working set is small enough to fit in the private caches, and

consequently the on-chip latency reduction of private archi-

tectures leads to a performance benefit. The combination

of different effects inflicts a remarkable variation across the

five applications chosen, except for ESP-NUCA which is

the architecture with the most consistent behavior.
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In the hybrid benchmarks, on average ESP-NUCA is at

the same level as CC-Best. In some cases, such as gcc-

gzip and gcc-twolf, the inter-thread isolation achieved by

CC with cooperation probability of 0% (equivalent to a pri-

vate cache) is slightly better than ESP-NUCA. The Shared

performance is clearly the worst alternative due to the large

amount of unnecessary interference among threads. The

average performance observed for each thread for this ar-

chitecture, and to a lesser extent in Cooperative Caching,

shows a high variability. ASR has a 100% higher variance

in average IPC3 than ESP-NUCA. Cooperative Caching has

a 10% higher IPC variance and 110% in D-NUCA.

6.4. NAS Parallel Benchmark Results

Figure 10 shows the performance obtained for each ap-

plication considered in this evaluation. The sharing degree

of these applications is relatively limited, with large num-

bers of references and large percentages of cache capac-

ity devoted to private data. In this context, private derived

architectures have a clear advantage over shared derived

ones because both the average hit-time and the inter-core

interference are attenuated. Although Shared and D-NUCA

have a poor performance, ESP-NUCA is able to tackle the

situation: it is the only shared architecture derivative that is

able to achieve a performance similar to private architecture

derivatives.

The relatively large memory footprint of most applica-

tions should be noted. The working set for the problem sizes

chosen is greater than 200MB. On average ASR complex

3Because there is no synchronization, we could use the average IPC of

all cores as a valid performance metric.
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mance for NPB Suite.

hardware implementation derives little to no benefit com-

pared to a simple private architecture because, as the num-

ber of shared blocks is relatively small, the uncontrolled

replication of shared data does not reduce hit-rate. The av-

erage performance for CC is quite variable. Note that the

error bars for this counterpart include error simulation and

variability observed for different cooperation probabilities.

The best CC configuration is different for each application

being 30% for IS, CG, MG and FT, 70% for LU and BT,

and 100% for SP and UA.

Similarly to Transactional workloads, ESP-NUCA

achieves better performance stability over the range of ap-

plications. In particular, the variance in execution time is

50% less than D-NUCA and 38% less than Cooperative

Caching. ASR is 30%more stable than ESP-NUCA in these

benchmarks.

7. Conclusions

This paper presents a cache architecture design with en-

hanced stability in several very different classes of appli-

cations. The properties observed suggest that ESP-NUCA

could provide an interesting alternative in general purpose

high performance CMP systems. Our proposal does not

require unsustainably complex mechanisms to enable the

cache hierarchy to self-adapt to workload behavior. By us-

ing decisions exclusively taken based on local information,

we can improve the overall performance of the system. The

best characteristics of shared and private caches are com-

bined in this new architecture, to achieve unparalleled sta-

bility across a broad spectrum of benchmarks.
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